home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Graphics Plus
/
Graphics Plus.iso
/
general
/
modelers
/
geomview
/
sgi.lha
/
Geomview
/
man
/
cat1
/
flythrough.1
< prev
next >
Wrap
Text File
|
1993-11-04
|
5KB
|
199 lines
flythrough(1) flythrough(1)
NAME
flythrough - Geomview external module to fly through Not
Knot hyperbolic dodecahedral tesselation
SYNOPSIS
flythrough [-t] [-h]
DESCRIPTION
Flythrough is a geomview external module that lets you fly
through the tesselation of hyperbolic space by a right-
angled regular dodecahedron which appeared in the mathe-
matical animation "Not Knot" produced by the Geometry Cen-
ter. You can either pick a pre-computed flight path or fly
around interactively. Click on "Not Knot Flythrough" in
the geomview Applications browser to start the program.
OPTIONS
-t Turbo mode: send commands off as fast as possible
without waiting for geomview to catch up.
-h Display help window on startup.
WHAT'S GOING ON
When you hit the "What's Going On?" button (or start up
the module with the -h option), you get a text help window
with most of the information in this man page. There is
also a 3D diagram of a single dodecahedron with color-
coded arcs indicating the pre-computed flight paths. You
can drag the left mouse button in the window to spin this
diagram around. It's easier to see what's going on in the
Euclidean diagram, while the hyperbolic version is more
similar to what you see in the flythrough.
CONTROL PANEL
You can either choose one of four flight paths through the
tesselation or stop the automatic flight by hitting the
"Stop" button and fly around yourself. For interactive
flight, hit the "Cam Fly" button on the geomview Tools
panel: then dragging the mouse with the middle button down
moves you forwards or backwards, and dragging with the
left button down is like turning your head. When you hit
"Go", the automatic flight will continue.
You can choose one of four tesselation levels: level 0 is
a single dodecahedron, level 1 adds a layer of 12 dodeca-
hedra (one for each face of the original dodecahedron),
level 2 tesselates two layers deep, and level 3 has three
layers. The more layers you have the slower the update
rate: level 3 is glacially slow, but each frame looks
pretty impressive. You can change the size of the dodeca-
hedra with the "Scale Dodecahedra" slider: at 1.0 they fit
together exactly. The "Steps" buttons control the
Geometry Center January 29, 1993 1
flythrough(1) flythrough(1)
smoothness of the flight path: you can set the number of
steps to 10 (jerky but fast), 20, 40, or 80 (smooth but
slow).
FLIGHT PATHS
All 30 edges of the base dodecahedron are white except the
three pairs of edges colored green, blue and red corre-
sponding to the three loops of the Borromean rings. Every
face of the dodecahedron has exactly one non-white edge,
so we can color the face by this color.
All flight paths begin and end at the center of a green
face. There are three other green faces: one adjacent to
this one, at right angles along the green beam; and a pair
which border the other green beam, on the other side of
the dodecahedron.
The light blue "Direct" path is the simplest to under-
stand: we go straight through to the green face directly
opposite from the original face.
The yellow "Quarter Turn" path, which goes to the adjacent
green face, simply circles around the green axis which the
two faces share.
The "Full Loop" path is also yellow: it repeats this quar-
ter turn four times so that we start and finish in the
same place. The three other paths just jump back to the
starting place when they reach the end.
The magenta "Equidistant" path, which goes to the other
green face which doesn't border the original face, is the
most interesting. It follows a so-called equidistant
curve: in this case, one that is equidistant to the red
axis that connects the two green faces in question. This
curve is like a parallel line in Euclidean space: it stays
a constant distant from the red axis, but it's not a
geodesic in hyperbolic space.
SEE ALSO
geomview(1), geomview(5), oogl(5), Not Knot (mathematical
animation available from Jones and Bartlett publishers,
Boston, MA).
AUTHORS
Charlie Gunn (geometry and flight paths) gunn@geom.umn.edu
Tamara Munzner (interactive interface) munzner@geom.umn.edu
Stuart Levy (3D diagram) levy@geom.umn.edu
Copyright (c) 1993
The Geometry Center
1300 South Second Street, Suite 500
Minneapolis, MN 55454
Geometry Center January 29, 1993 2
flythrough(1) flythrough(1)
email: software@geom.umn.edu
Geometry Center January 29, 1993 3